This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Cycloadditions with Metauo-Phosphaalkenes

Lothar Weber^a; Annette Rühlicke^a; Olaf Kaminski^a ^a Faculty of Chemistry, Universitiit of Blelefeld, Bielefeld, Germany

To cite this Article Weber, Lothar , Rühlicke, Annette and Kaminski, Olaf(1994) 'Cycloadditions with Metauo-Phosphaalkenes', Phosphorus, Sulfur, and Silicon and the Related Elements, 93: 1, 325-328

To link to this Article: DOI: 10.1080/10426509408021846 URL: http://dx.doi.org/10.1080/10426509408021846

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CYCLOADDITIONS WITH METALLO-PHOSPHAALKENES

LOTHAR WEBER*, ANNETTE RÜHLICKE AND OLAF KAMINSKI Universität of Bielefeld, Faculty of Chemistry, D-33615 Bielefeld, Germany

Abstract Cycloadditions of metallo-phosphaalkenes such as $(C_5Me_5)(CO)_2$ Fe-P=CR¹R² (R¹ = R² = SiMe₃, NMe₂; R¹ = Ph, R² = SiMe₃) are performed with isocyanides, electron-poor alkenes, alkynes and heteroalkenes.

Metallo-phosphaalkenes $\underline{\underline{A}}^1$ are polyfunctional molecules, which allow a number of interesting chemical transformations.

$$\begin{array}{c}
O^{C} & Fe \\
O^{C} & P = C \\
O & \underline{A}
\end{array}$$

When metallo-phosphaalkenes \underline{A} are exposed to equimolar amounts of isocyanides [2+1] cycloadditions with the formation of 1-metallo-2-iminophosphiranes are observed (eq. 1)².

$$[Fe]-P=C \xrightarrow{SiMe_3} \xrightarrow{+ CNR} \xrightarrow{R} \xrightarrow{N} C \xrightarrow{SiMe_3} (1)$$

$$\stackrel{\triangle}{=} \qquad [Fe] \xrightarrow{P} C \xrightarrow{SiMe_3}$$

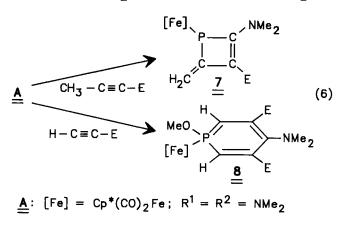
$$R = Ph, o-Tol, 2.6-Xyl; [Fe] = Cp*(CO)2Fe$$

The reaction of $(C_5Me_5)(CO)_2$ Fe-P = $C(NMe_2)_2$ with electron-poor alkenes such as methyl acrylate, dimethyl furnarate, and furnarodinitrile affords metal-functionalized 1,2-dihydrophosphetes $\underline{2}$. Obviously the [2+2] cycloaddition of the components is followed by the rapid extrusion of dimethylamine³.

$$E = CN, CO_2Me; R = H, CN, CO_2Me; [Fe] = Cp*(CO)_2Fe$$

The C=O bond in anhydrous hexafluoroacetone gives rise to a dipolar [3+2]-cycloaddition. Here the metalloheterocycle $\underline{3}$ is isolated (eq. 3).

A quite different behavior is encountered when the amino-functionalized metallophosphaalkene is treated with azo compounds. This reaction results in the condensation of a ring methyl substituent with the bis(dimethylamino)methylene group to give compound 4 (eq. 4).


$$CH_{3}$$

$$O^{C} \stackrel{\text{NMe}_{2}}{\downarrow}$$

$$O^{C} \stackrel{\text{$$

The same metallo-phosphaalkene and dimethyl acetylenedicarboxylate undergo reaction to give the metallated 1-phosphabutadiene $\underline{5}$ and the metalloheterocycle $\underline{6}$ in a 2:1 ratio⁴.

A series of [3+2] and [2+2] cycloadditions including a [2+2] cycloreversion are invoked to explain the course of this transformation. In contrast to this methyl 2-butynoate and methyl propiolate give rise to the conversion of the metallo-phosphaalkene into the 1-metallo-2-methylene-1,2-dihydrophosphete $\underline{7}$ and the P-metallo- λ^5 -phosphinine $\underline{8}$, respectively (eq. 6).

REFERENCES

- E. Niecke, H.-J. Metternich, M. Nieger, D. Gudat, P. Wenderoth, W. Malisch, C. Hahner, and W. Reich, <u>Chem. Ber.</u>, <u>126</u>, 1299 (1993).
- 2. L. Weber, A. Rühlicke, H.-G. Stammler, and B. Neumann, Organometallics, 12, 4653 (1993).
- L. Weber, O. Kaminski, H.-G. Stammler, B. Neumann, and V.D. Romanenko, <u>Z. Naturforsch.</u>, 48b, 1784 (1993).
- L. Weber, O. Kaminski, R. Boese, H.-G. Stammler, and B. Neumann, <u>Z. Naturforsch.</u>, manuscript submitted.